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Breakdown of dynamic scaling and intermittency in a cascade model of turbulence
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We present an analytic and numerical analysis of the Gledzer-Ohkitani-Yamada (GOY) cascade mod-
el for turbulence. We concentrate on the dynamic correlations, and demonstrate both numerically and
analytically, using resummed perturbation theory, that the correlations do not follow a dynamic scaling
ansatz. The basic reason for this is the existence of a second quadratic invariant, in addition to energy.
This implies the breakdown of the Kolmogorov-type scaling law, in a manner different from the conven-
tional mechanisms proposed for Navier-Stokes intermittency. By modifying the model equation so as to
eliminate the spurious invariant, we recover to good accuracy both dynamic scaling and the Kolmo-
gorov exponents. We conclude that intermittency in the GOY model may be attributed to the effects of
the spurious invariant which does not exist in the three-dimensional Navier-Stokes flow.

PACS number(s): 47.27.Eq

I. INTRODUCTION

A class of models of hydrodynamic turbulence that has
recently attracted some interest are the so called shell, or
Gledzer-Ohkitani-Yamada (GOY) [1,2], models. These
models exhibit numerically a clear deviation from the ex-
pected scaling predicted by an application of
Kolmogorov-like dimensional analysis. In addition, high
moments of the variables exhibit multiscaling. It has
been speculated that the mechanism for generation of
multiscaling in these models may be related to the possi-
bility of multiscaling in Navier-Stokes turbulence. Inter-
mittency in hydrodynamic turbulence is usually attribut-
ed to large spatial fluctuations in the local energy dissipa-
tion €. In the shell models there is no space coordinate,
and therefore it is unclear how this mechanism could be
applied to shell models. However, Ref. [2] considers the
connection between dissipation fluctuations in time and
intermittency in the structure function via a Taylor-
hypothesis-type argument.

We demonstrate in this paper that the “intermittency”
observed in the GOY models is largely and perhaps com-
pletely due the existence of a second quadratic invariant
in addition to energy [3,4]. This quadratic invariant does
not have an analog in Navier-Stokes equations, and is not
even positive definite, but still its existence will be shown
to have important effects on the dynamics. This claim
will be supported by comparison with a modified version
of the GOY model that lacks the second invariant. In
particular, the original GOY does not possess dynamic
scaling, while the modified version obeys dynamic scal-
ing.

The paper is organized as follows. Section II defines
the model and details some of its important symmetries
and conserved quantities. In Sec. III we present our nu-
merical results and demonstrate the absence of dynamic
scaling in the GOY model. In Sec. IV we examine the
direct interaction approximation (DIA) equations for the
GOY model and conclude that dynamic scaling is indeed
inconsistent with the DIA due to the existence of the
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second invariant. In Sec. V we consider the modified
GOY and show that dynamic scaling and the Kolmo-
gorov exponents are restored. Section VI offers some
conclusions regarding the relations between intermitten-
cy in shell models and Navier-Stokes turbulence.

II. GENERAL PROPERTIES
OF THE MODEL

A. Model definition
The GOY model (in its general form) reads [1]
(8, vk u, =ilak,u, 1, 3 F+bk, U, i,
ek, g, U, ¥ S (1)

where u,,n 2 0 is the complex dynamical variable of shell
n, with wave number k, =kq,g". g >1 is the shell spac-
ing, v is the viscosity, f,, is the external forcing of shell n,
and a, b, and c are real coupling constants whose sum is
zero. The number of shells may in principle extend to
infinity, but in practice the presence of the viscosity term
acts as a cutoff. This allows us to truncate the system of
equations after a finite number of levels without changing
the dynamics.

B. A phase symmetry

The unforced Navier-Stokes equation possesses transla-
tional invariance. In k space, this implies an invariance
of the equation with respect to the transformation
vi—e %, of a solution v,. This symmetry implies that
the Fourier components of the velocity field are & corre-
lated in k, e.g.,

(vivg) =F(K)8(k+q) . (2)

This follows from the assumption that the symmetry of
the equation is not broken by the forcing. The implica-
tion of this relationship is that the pair correlators and
the Green’s functions are all diagonal in k; in other
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words, the vertex conserves momentum.

The translational invariance of the Navier-Stokes equa-
tion is not retained in the GOY model. However, there
exists an analog of this symmetry which leaves the GOY
model equations invariant. This is the transformation

u,—eu, , (3)
u, ., —e %, ., 4)
Uy e Pu, g, (5)

Note that 6 and ¢ are arbitrary global phases. This
transformation adds the same phase to shell variables
that are separated by a distance of three shells. A reason-
ing similar to that of the Navier-Stokes case leads to the
conclusion that

(u,uy,,,?»=0 if m is not divisible by 3 . (6)

This symmetry also implies that the shell variables have a
zero mean. Similar relations may be obtained for higher
order correlations.

C. Quadratic conserved quantities

A crucial ingredient of the Kolmogorov argument is
the existence of one (quadratic) invariant for the Euler
equations: energy. For the Navier-Stokes equations the
energy is dissipated at the smallest scales and is injected
at the largest scales. Kolmogorov assumed the existence
of an energy flux that is scale independent in the inertial
range. Motivated by this, it is useful to analyze the GOY
model in terms of quadratic invariants.

We are interested in conserved quantities of the form

C=34,lu,l*, ™

and demand that in the limit of no forcing or viscosity
9,C =0, independent of u,. Hence, inserting Eq. (1) we
obtain a system of equations

Aya+ A, b+ A4,,,c=0. (8)

This system may be viewed as a linear recursion relation
for A, ., in terms of 4, ,, and A,. This means that
there are only two linearly independent solutions for the
A’s. As we demand energy conservation, one of these
solutions is 4, =1 and, consequently, a +b +c =0. We
look for the second independent solution in the form
A,=A". We may solve for A4 yielding 4 =a/c. With
the standard choice of parameters a =1,b =c = —%, we
obtain A4,=(—2)"=(—1)"k,. The conserved quantity
L=3(a/c)"|u,|* is spurious in the sense that it has a
dependence on the parameters of the model. In the usual
choice of parameters [see Eq. (12) below] this invariant is
not positive definite; however, this does not prevent it
from having an important dynamical effect [3-5] (see
below). For a particular set of parameters, it is possible
to interpret L as the analog of helicity which is conserved
in the Euler equations [3]. However, the existence of this
invariant was not considered as a requirement in the orig-
inal definition of the model [1].

III. NUMERICAL EXAMINATION
OF SCALING PROPERTIES

In previous works [2,6] it has been found that the
simultaneous correlators of the shell variables obey scal-
ing laws, such as

(uy 17y ~k, o, ©)

for shell numbers inside the inertial range. {, was found
to have a nonlinear dependence on g. Such a behavior is
termed multiscaling. The inertial range is defined as
shells in which both the dissipative and forcing terms are
small with respect to the nonlinear term.

The usual Kolmogorov picture also implies that the
different-time correlators should obey a dynamic scaling
relation of the type

Cu(Ou,(t+7)) ~k 2 (rkZ) . (10)

7 is a universal scaling function independent of the
specific shell. This scaling relation in the frequency
domain becomes

(uy(@)?)~k)(w/kf) , (11)

where y +z=¢,. Kolmogorov scaling predicts that
y=—4% and z=2%. Although intermittency may change
the values of these exponents, one would still naively ex-
pect the dynamic scaling hypothesis to hold.

In order to test this hypothesis we integrated the GOY
equations numerically and considered the frequency
power spectra of the shell variables. Following the usual
procedure we chose f;=(1+i)5X 1072 and all other f,’s
to be zero. In the numerical integration of the equations
we used the following parameters:

a=1, b=—0.5, ¢=-—0.5

— _ 12
ko=1/(32V2), v=6X10"7, g=v2. 12
There were 43 shells (running from O to 42) in the model
which corresponds to roughly 21 level in the ¢ =2 mod-
els. The equations were integrated using a fourth-fifth or-
der Runge-Kutta adaptive step method. The integration
time was 6.6X 10%, which corresponds to approximately
1500 forcing scale turnover times.

The power spectra were calculated as follows: A data
string of 65536 equally time-spaced samples, calculated
by linear interpolation of the values obtained from the in-
tegrator, were fast Fourier transformed with a Hanning
window, and |u,(w)|?> was calculated. This procedure
was repeated many times, and the values of |u, (w)|? were
averaged.

The spacing between the samples was chosen to be
somewhat smaller than the characteristic time scale for
the highest shell (the 37th) which was analyzed. The size
of the sample was sufficient to capture the whole dynamic
range of the power spectrum except for the lowest shells.

An attempt to collapse the data of several power spec-
tra is shown in Fig. 1. The power spectra are rescaled ac-
cording to the typical height and width of each power
spectrum as follows:
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FIG. 1. Frequency power spectra for three
shells 12 (dashed), 22 (full), and 32 (dot dashed)
after the rescaling given in text. The intersec-
tion point is an artifact of the rescaling and not
a real feature of the data. Although there is a
superficial similarity, the three functions de-
picted in this figure differ significantly. We
measured the difference by calculating the ra-
tios {(w")/{w?)"/%. These ratios deviate
significantly between shells, indicating that the
functions do not collapse onto a universal scal-
ing function.
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fdof, () @,

w is the dimensionless frequency w/w,,.

The three power spectra shown in Fig. 1 demonstrate
that the rescaling performed in (14) yields a poor data
collapse. There is a general trend for the spectra of
higher shells to be flatter than lower shells at the same
rescaled frequencies. We thus conclude that dynamic
scaling is incompatible with our numerical results. In Sec.
IV we will analyze the GOY model analytically and show
explicitly where dynamic scaling fails.

We also measured the cross correlations between
shells. Recall that the symmetry (3) implies a vanishing
of cross correlations that have a nonzero modulo 3
difference between them. This effect was clearly observed
in our simulation. Cross correlations of shells differing
by a multiple of three were larger by two orders of mag-
nitude compared to cross correlations of nearby shells
without this property. The normalized cross correlations
Cupuk)/V (u,|*)(lu,,|*)) decay as |n —m | increases
(by multiples of 3) but seem to converge to a nonzero
value when one of the shells is in the dissipation range
(larger than 33).

Note that the period 3 oscillations observed by many
authors [3,6] are a direct result of aliasing of the effect of
the forcing into the inertial range by the period 3 level to
level correlations. They should be interpreted as a pecu-
liar artifact of the GOY model, and have no relation to
lacunarity in real turbulence. This is clearly shown by
the fact that the period 3 behavior is independent of the
value of the shell separation and will persist even in the
limit of shell separation going to zero [7,8]. On the other
hand, the period 2 oscillations in the structure functions
near the top of the inertial, are genuine dynamical effects,
and are due to the fact that L is not positive definite [3].

10.0

In addition, we measured the scaling of the structure
functions {|u,|?). These quantities are known to exhibit
multiscaling [2], and we have recovered this behavior. In
fact, as we are using shells separated by V"2, we found
stronger effects of intermittency (similar to what was ob-
served in [6]).

IV. DIRECT INTERACTION APPROXIMATION
FOR THE GOY MODEL

As we have seen in Sec. III, dynamic scaling fails to ex-
plain the shape of the frequency power spectrum. In or-
der to examine this effect analytically, we performed a
resummed perturbation expansion for the GOY model.
Basically we ‘have derived the analog of the DIA equa-
tions [9] for the GOY model. The DIA approximation is
known to fail for the Navier-Stokes equations due to the
failure to respect Galilean invariance, or not taking into
account the effect of large scale advection in a proper
way [10]. The GOY model forms a truncated set of equa-
tions which are only coupled locally, hence conventional
wisdom (which we will have no reason to doubt in what
follows) indicates that the DIA should be a good approxi-
mation for the GOY model.

As we have noted in Sec. II B, the phase symmetries (3)
induce the vanishing of some cross terms in the correla-
tion functions and in the Green functions; however, not
all of the cross terms vanish. This implies that, as op-
posed to the Navier-Stokes case, the GOY model DIA
equations are formulated in terms of functions that are
not diagonal in the shell » index, namely

G(n,m,0)8(w+w )={8u,(w)/8f (")) ,

(15)
Uln,m,0)8(0o+o')={u,(0)*u, (o)) .

The nondiagonality makes for a slightly more compli-
cated form for the DIA equations. They now contain ex-
pressions for off diagonal quantities as well as diagonal
ones. It also complicates the discussion of the conver-
gence properties of the integrals and the sums. Neverthe-
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less, one obtains the self-consistent Dyson-Wyld integral
equations

G(n,m,w)

=G%n,0)(8, »+3S2(n,L0)G(,m;0), (16)
1

Un,m;w)

=36 (nk;0)[{fEf1)+ Pk L;0)]G(,m;w), (17
k,1

and the DIA for the mass operators

2‘2)(n,m;w)=fdw'k,,kmEZC,-,-lcjjrq_j'U(n +im—j,—0o—ao')G(n+i'm—j,0'), (18)
i jj'
®D(n,m;0)=1 [do'k,k, 3 S cipc,;Uln+i,m+j,—o—o\Un +i',m+j',0') , (19)

i jj

where the coupling coefficients are
€12=¢1=a, ¢ 1=c_;=b,
€2, -1TC—,—2=C.

Although in principle one should solve these equations to
find the behavior of the correlation function, one usually
tries a scaling ansatz in order to extract information
about the scaling behavior of the correlation function U.
Notwithstanding our knowledge based on numerics that
dynamic scaling fails, it is instructive to try a dynamic
scaling form for G and U in order to see why it fails. We
assume

G (n,m,w)=(k,k, ) *%g %,km/k,, ,
" 20)
Uln,m,o)=k,ky, Y"*f %,k,,,/k,, ,

where y and z are scaling exponents to be self-consistently
determined. If we assume naively that all sums and in-
tegrals converge in the limit of infinitesimal dissipation
[11] (v—0), we find that the DIA equations for F and G
both yield the same exponent relation

z—y=2. (21)

Thus up to this point dynamic scaling gives us a one pa-
rameter family of solutions that is self-consistent. In or-
der to obtain a second exponent relation it is usual to use
the conservation of energy in the inviscid limit (Euler
equation) to deduce a conservation of flux in the inertial
range (this conservation may be considered as the
definition of the inertial range). The energy flux through
shell n is defined in the GOY model as [6,3]

en =Im( _Ckn—lun—lunun+1+aknunun+lun +2) .

(22)

Assuming dynamic scaling, the lowest order terms in the
expansion for the three-point correlators in (22) scale as
k!T2*2; thus constancy of the flux (tested numerically
by [6]) implies that

z+2y=—2, (23)

[

which with (21) gives z=2 and y = — %, which is what a
straightforward application of Kolmogorov-type argu-
ments gives [1].

Renormalized perturbation expansion, in which Galile-
an invariance is preserved [12,13], predict Kolmogorov
scaling for Navier-Stokes turbulence, including dynamic
scaling for the correlation functions and Green’s func-
tions. However, experiments indicate that the scaling of
higher order structure functions differs from the Kolmo-
gorov 1941 predictions. How to understand these devia-
tions and how to reconcile these with the results of renor-
malized perturbation theories are subjects of active study
[14,15]. At any rate, none of the present explanations
resorts to assuming the failure of dynamic scaling as a
cause. Indeed, in Navier-Stokes turbulence there seems
to be no reason to doubt the existence of dynamic scaling.

The GOY model is different in this respect. In addi-
tion to relationship (22) we have an additional conserved
quadratic quantity L defined in Sec. II B. This induces an
additional conserved flux

1,=—Im{(a/c)"(—k, _qt, _t,t, +

+knu,,un+1u,,+2)> ’ (24)

which yields the exponent relation

__In(a/c)

Ing (25)

z+2y=-—2
in the same manner as (23) was obtained. The right hand
side of this scaling relation is not real in general. Such a
solution is unacceptable, since the simultaneous pair
correlation function must be positive. A more general
scaling ansatz that includes a periodic function of n +m
can solve this problem, and then only the real part of Eq.
(25) should be taken. However, this scaling

Inla /c|

22y =2+

, (26)

contradicts the scaling relation (23) derived from the en-
ergy flux conservation. Indeed, the energy flux conserva-
tion is violated when the original scaling ansatz is multi-
plied by a nonconstant periodic function of n +m.

There are two ways to solve the contradiction. Either
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one of the fluxes vanishes in the inertial range (similar to
the case of two-dimensional turbulence), or we must re-
ject the assumption of dynamic scaling. If one of the
fluxes is small in some sense compared to the other, one
may treat it as yielding a correction to dynamic scaling
superimposed on top of the larger flux’s contribution.
Our numerics do not support this case, but we cannot
rule out the possibility that intermittency disappears
asymptotically in the number of shells. The existence of
two nonvanishing fluxes in the inertial range is incompa-
tible with dynamic scaling. A numerical check of the flux
!l indeed demonstrates that it does not vanish. When only
one level is forced, the two fluxes are linearly dependent
[3], and therefore must be nonzero simultaneously. We
identify this fact as the reason for the failure of dynamic
scaling observed numerically in Sec. III.

V. A SHELL MODEL
WITH A SINGLE INVARIANT

Following the reasoning of Sec. IV, modifying the
GOY model so as to remove the spurious L invariant
should restore the possibility of a dynamic scaling solu-
tion for the DIA equations. A dynamic scaling solution
of the DIA entails the Kolmogorov scaling for simultane-
ous two-point correlations. If the DIA is a good approxi-
mation then we cannot find a dynamic scaling solution of
the GOY with intermittency. This prediction can be test-
ed in a model that obeys dynamic scaling, thus we must
construct a model with only one conserved flux.

A simple way of eliminating the L invariant is by cou-
pling the shell variables to higher and lower shells. A
generalization of the GOY interaction term that couples
to more modes reads

i\ Xajkyuy i, tbgk, u,
i<j .

+c;:k

ij n_ju,,,ju,,ﬂ‘j) Q27

The sum runs on a finite set of pairs (the original GOY is
the special case where there is only one pair, namely
{1,2}]). Energy conservation in the inviscid unforced case
demands that
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a;+b;;+c;=0. (28)
Condition (8), whose solutions are the quadratic invari-
ants of the system, is generalized in this case to

Aya;+ A, b+ A, e =0

i
(29)

Condition (28) ensures that (29) is satisfied by 4, =const.
Condition (29) is clearly more restrictive than the original
condition (8), and we will show in the following an expli-
cit example in which energy is the only conserved quad-
ratic invariant.

In principle the pairs {ij} may be chosen arbitrarily.
However, if we want to ensure the vanishing of (u,)
directly from the symmetry of the equations, we need the
phase symmetry (3). Thus we are interested in including
only pairs which preserve (3). This set includes all the
pairs in which i +j is divisible by 3, and neither i nor j is
divisible by 3.

We now have quite a large parameter space at our
disposal, of which we chose the next most local allowable
pair, which is {2,4}, in addition to {1,2}. Returning to
Eq. (29) with the specific choice of pairs {2,4} and {1,2},
we see that there are two independent ways to obtain
A, 4 from A, and A4,,,. One way is by iterating the
equation for the {1,2} pair twice, and the other way is by
iterating it once to obtain an expression for 4, ,, and in-
serting this into the equation for the {2,4} pair. As both
expressions must be equal, we find a mapping that gives
A,+; as a function of A4,. As we know that
A,=A,,,=A,,,= -+ is a solution due to (28), we
conclude that there are no more independent quadratic
invariants for this coupling choice.

Our choice of couplings means that there is a three-
dimensional parameter space, since each pair involves
two independent coupling constants. In addition, a glo-
bal scale factor can be absorbed in a redefinition of the u,,
variables. As observed in [16], the original GOY does
not exhibit chaotic behavior in parts of the parameter
space; instead there can be a stable fixed point, limit cy-
cle, or quasiperiodic motion. This phenomenon also per-
sists in the enlarged parameter space [8]. We expect dy-

for every pair{ij} .
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namic scaling to appear for parameter values for which
there are chaotic solutions. After a qualitative mapping
of the parameter space, we found a region which has the
desired property. Typical parameter values in this region

are
ap=1, b,=—05, c,=—0.5,

byy=—2.5,

(30)

a,, =3, Cypy=—2.5.

This choice of parameters is essentially two original
GOY-like couplings, the second of which is five times
stronger than the first. The fact that the {2,4} coupling
is much stronger than the {1,2} coupling raises a prob-
lem that if only one level is forced, the shells with the
same parity as the forced shell will have larger ampli-
tudes than neighboring shells with opposite parity. This
problem is dealt with by forcing shell 2 by
f,=(14i)X 1072 in addition to the usual forcing of shell
3, but even then there remain some period 2 oscillations
in the structure functions. Other numerical parameters
remain unchanged, including the simulation duration.

We have measured the same quantities as for the origi-
nal GOY model (3). The data collapse for the frequency
domain power spectra is shown in Fig. 2. The fit is clear-
ly superior to the fit accomplished in Fig. 1. Also, the
empirical rescaling parameters #, and w, defined in (14)
can be fitted well to power laws

o, ~k,?'67i0'01 , (31)
hn ~k"‘1.35i0.01 , (32)

which are compatible with the dynamic scaling predic-
2

tion and are close to the Kolmogorov exponents 3 and
—3%. As another check we have measured higher order
structure functions |{u,|?) and compared their scaling
exponents to those of the original GOY and to Kolmo-
gorov scaling. Table I contains this comparison. Note
that higher moments still do not conform to the Kolmo-
gorov exponents, but that the deviation is much smaller.
The deviation may be attributed to many sources, such
as finite system effects (corrections to scaling), a per-
sistence of some memory of the extra invariant and, of
course, real intermittency, indicating a failure of the per-
turbation scheme on the level of the DIA. It is beyond
the scope of this paper to decide which of the above
effects is responsible for the deviations from Kolmogorov
scaling. Our purpose is to stress that these effects are
much smaller than the ones observed in the original

TABLE I. A comparison between the scaling exponents §, of
the structure functions in a few models and the Kolmogorov
scaling. The errors in the scaling exponents are approximately
+0.01, except for the modified model with ¢ =2, where they are
+0.03, due to large fluctuations in the structure functions.

n 1 2 3 4 5 6

Original GOY (g=V2) 042 078 105 120 129 135
Modified GOY (¢ =v2) 0.36 0.69 1.00 1.8 1.53 1.81
Original GOY (g=2) 039 075 107 136 1.64 187
Modified GOY (g =2) 035 069 1.03 135 1.65 1.92
Kolmogorov 1941 033 0.67 100 1.33 1.67 2.00
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GOY model. We attribute the large deviations in the
original GOY to the lack of dynamic scaling that is in-
duced by the existence of a second flux in the inertial
range.

VI. CONCLUSIONS

Numerical evidence shows that the solutions of the
GOY model do not have dynamic scaling. In addition,
DIA equations do not have solutions which exhibit dy-
namic scaling, due to the existence of two nonvanishing
constant fluxes in the inertial range. The derivation of
Kolmogorov scaling for the structure functions via per-
turbation methods relies on the existence of dynamic
scaling. Therefore, there is no evidence of a contradic-
tion between perturbation theory and multiscaling in the
GOY model.

This situation is unlike the case of Navier-Stokes tur-
bulence. Experimentally, high order structure functions
deviate from the predicted Kolmogorov exponents [17].
However, we have no good reasons to doubt the scale in-
variance in time and space of turbulent motion. Helicity,
or other conserved quantities which in principle give rise
to conserved fluxes, are zero in isotropic homogeneous
turbulence, and are considered small in theories of tur-
bulence. A dynamic scaling ansatz in the perturbation
theory is then consistent, and yields the Kolmogorov
scaling uniquely [12,18]. It should be stressed that dy-
namic scaling has never been proved from first principles,
and its failure may be an interesting alternative mecha-
nism for explaining some aspects of turbulent phenome-
nology. The results of this paper motivate us to propose
that dynamic scaling should be tested directly in experi-
ments in turbulence. A major deviation from dynamic
scaling would imply that a reconsideration of the current
working assumptions in theories of turbulence is needed.
Whether or not the final resolution of intermittency in
turbulence will rely on presently applied techniques, or
whether nonperturbative effects should be considered, is
still not clear.

The reason for the difference between the Navier-
Stokes intermittency and the intermittency in the GOY
model is the existence of a second quadratic invariant.
Intermittency in a model in which the second invariant is
absent may have an origin closer to the Navier-Stokes-
type intermittency. However, our results seem to indi-
cate that a modified GOY model without the second in-
variant has only small remnants of intermittency. There-
fore, in our opinion, the relevance of multiscaling in the
GOY to the dynamics of the Navier-Stokes method is
questionable.
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